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Example of an Inundation Assumption Area Map (Tama River)
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Hazard Map (Nagoya City
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Kikikuru (Hazard Level Distribution)
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Flood Forecast (MLIT and JMA)

* Announces the current water level and forecasts of future water levels.

« Targets rivers with relatively large basin areas where forecasting is technically
feasible.

« Jointly conducted by river administrators and the Japan Meteorological Agency.

« 298 rivers managed by the national government and 131 rivers managed by
prefectural governments are designated (as of March 31, 2023).
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River Disaster Prevention Information (MLIT)

Water Level Information
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Recent Major Flood Disasters

Mogami River and Koyoshi
River Flooding (2024) (2020) (2019)

Western Japan Heavy  Northern Kyushu Heavy Kinu River Flooding
Rain (2018) Rain (2017) (2015)

(H# : BXRBEEN. AERENRS)
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Kinu River Levee Breach (2015)

In 2015, the Kinugawa River, which flows through the Tokyo metropolitan area,
experienced flooding that exceeded its discharge capacity, causing a levee
breach and inundating approximately 40 square kilometers.

The disaster resulted in 2 fatalities and damage to about 8,800 houses.

A large number of people were stranded, and approximately 4,300 individuals
were rescued by helicopters, boats, and other means.

The J0s0O City Hall was flooded, and lifelines such as electricity, water supply and
sewerage systems, and railway services were cut off.

W

-
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Over 60% of the victims were found at home after failing to
evacuate. (Kuma River Flood, 2020)

» During a series of record-breaking heavy rains, 65 people died in Kumamoto
Prefecture.

» A summary by the prefectural government on where the victims were found
revealed that more than 60%—41 people—were discovered inside their homes or
within their premises.

> In addition, 12 people were found outdoors away from their homes, and 7 were
found at sea or on beaches. (Based on NHK summary, July 13, 2020)
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Increase in the Number of Heavy Rainfall Events of 50 mm or
More per Hour

The average annual number of occurrences in the most recent 10 years (2015—
2024), about 334 times, has increased by approximately 1.5 times compared to the
average annual number in the first 10 years of the statistical period (1976—1985),

about 226 times.
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https://www.data.jma.go.jp/cpdinfo/extreme/extreme_p.html

Changes in Rainfall and Flood Frequency
Due to Climate Change

Climate/Change | o infall | River Flow gl
Scenario Frequency

2°C rise (RCP2.6) ~1.1 X ~1.2 X ~2 X

4°C rise (RCP8.5) ~1.3 X ~1.4 X ~4 X

2°C rise (RCP2.6): Paris Agreement target; assumes achieving net-zero
greenhouse gas emissions in the second half of this
century.

4°C rise (RCP8.5): Scenario with the greatest degree of warming.

(Recommendations from a study group of MLIT)
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Summary of Characteristics and Lessons from Recent
Heavy Rain Disasters

» Record-breaking rainfall has caused frequent flooding damage
across various regions.

» In large-scale flood disasters, water has reached the eaves of two-
story houses, resulting in many casualties and stranded
individuals due to delayed evacuation.

» Flood damage to businesses has caused direct losses as well as
secondary disasters from the inundation of facilities, having
severe impacts on regional socioeconomic activities.

» In the future, flood frequency is projected to increase to about two
to four times the current level.

» Strengthening preparedness for flood disasters across society is
an urgent priority.
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Subtopic B, “Promotion of Disaster Prevention Actions
through Risk Information.”

» Despite the availability of flood hazard maps during normal times and
the provision of various information during heavy rainfall—such as
disaster risk levels, river water levels, and flood forecasts—flood
damage has not decreased.

» In recent flood disasters, residents have failed to take appropriate
evacuation actions, resulting in many isolated individuals and casualties.

» Companies have also not implemented adequate disaster prevention
measures, and flooding has caused not only severe direct damage but
also serious impacts on local communities through ripple effects such
as the suspension of business activities and secondary disasters.

» At present, neither residents nor companies recognize flood damage as
their own problem, and preparedness for disasters remains insufficient.

—

/This project aims to provide information that enables people to A
recognize the danger of flooding in a realistic way, so that residents
and companies see flood damage as a matter directly concerning
kthem and are able to take appropriate disaster prevention actions. D
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Subtopic B, “Promotion of Disaster Prevention Actions
through Risk Information.”

* Provide information that enables people to recognize the danger of
flooding in a realistic and concrete manner during both normal times and

disasters. Normal times: (B-1, B-2) Disaster times: (B-3)

» Provide quantitative information on the future frequency and scale of
floods under climate change, which is necessary for companies when
making investment decisions. (B-1, B-2)

Normal times]

« B-2 Visualization technology for water-related disaster risks and damage
Impacts

« B-1 Basin-scale prediction technology for wind and flood damage impacts

" Disaster times |

« B-3 Technology for evaluating and generating real-time
disaster risk information that promotes disaster prevention

actions

—_
o
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Information That Triggers Evacuation During a Disaster

» About one-third of people said that their
“trigger for evacuation” was real and
concrete information such as “changes in
the surrounding situation.”

(Survey of survivors of the 2018 Western Japan Heavy Rain

Disaster)
» However, evacuating only after flooding

is imminently approaching carries a high
risk of being too late.

» If they had had information on “when
and to what extent the location they
were in would be flooded,” they might

have evacuated earlier.
(Comment from a survivor submitted to NHK)

It has been shown that real, concrete, real-time information is
effective as an evacuation trigger.
20




B-3 Technology for the evaluation and generation of real-time

disaster risk information that promotes disaster prevention actions

|

Generation of real-time inundation\
and prediction information

Real-time identification of actual
inundation extent

» Collect on-site inundation occurrence
information and generate real-time

inundation information (inundation extent,

inundation depth).

Real-time inundation prediction

» Generate highly accurate inundation
prediction information by performing
data assimilation using high-speed
computation and real-time inundation
information.

Development of a tool that

N inundation risks in real time

enables residents to grasp specific
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Real-time identification of actual inundation extent

> Flood occurrence information is identified using river patrol drones.

> Inundation information in urban areas is collected using inundation sensors,
abnormal vehicle flow detection, drone images, helicopter images, and
home appliance sensors.

Inundatlon sensors
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Utilization of Drone-Captured Images
(Kitami Institute of Technology / The University of Tokyo)

> They are developing technology that uses drone-captured images to generate
flood occurrence and inundation extent information, including Al-based automatic
levee breach detection from full-scale experimental footage.

> They are also building a drone operation system usable in both normal and flood
conditions, with charging-port-equipped drone tests conducted on the
Fushikobetsu River in Hokkaido.
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Utilization of Vehicle Flow Data

> We are developing technology to collect vehicle flow data and use Al to
generate real-time inundation occurrence information.

@®Image of inundation area estimation
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X Vehicle behaviore Generation of real-time

inundation information

By detecting anomalies in real time from vehicle behaviors such as U-
turns, sudden braking, and speed reduction, and overlaying this data
with simultaneously collected disaster prediction information, we can

identify inundation occurrence conditions.
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Real-time inundation prediction

» In Japan’s river basins, inundation areas can change within hours, requiring
high-speed computation for timely predictions.

» Using the Dynamic Mode Decomposition (DMD) method, we achieved
inundation simulations about 100 times faster than conventional methods,
and developed a data assimilation technique to correct parameters using
real-time inundation data.

Generation of _ Corrections by
Inundation Occurrence Prediction Information data assimilation
Upon receiving Flood outbreak _ Lk \«.
. . location : o))
inundation occurrence ® P4 ® v P4
information, perform 3 Y y 5
high-speed inundation Mot
simulation (within 10 \ #\ ) )}
minutes). T & S8
50~10m SN >y,
30~50m [ \ 1 wi2ksY N
oi-oom i \ 7 AL
3hiz M LEF Al 3h1§0),|1, 517 8 (ﬁpﬁr%’-)

26




DMD(Dynamic Mode Decomposition)

Originally developed in the field of fluid dynamics, it is now applied in a wide
range of fields including geotechnical engineering, traffic engineering, and
economic/financial engineering. Notably, there have been no previous
applications to inundation analysis or prediction.

3 Numerical analysis of water surface
M fluctuation

Simulation using PDE

( In conventional physical simulations, It
is necessary to solve complex partial
differential equations, which requires
\_significant computation time.

X411 = AX; If the linear transformation A '
is known, there is no need to solve
\complex partial differential equations.
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matrix, its approximate value - P - T
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Flow of Inundation Analysis Using DMD

>k Cooperating organization: Laboratory of Professor Tadashi Yamada, Chuo University

Inundation Mode extraction from Inundation analysis using
simulation inundation analysis DMD (modes)
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% Inundation occurrence location : :
By using DMD, high-speed

analysis is possible.

A large number of inundation simulation analysis
results are required to build a DMD model.

28



Parameter Adjustment Using On-site Inundation Information

To adjust the constructed DMD model to match observed inundation data,
parameters are introduced.

[DMD Model]
—_— t:Time
x(t) T QD exp{ 'Qt } x(t):Inundation depth distribution at time t
@ : Spatial mode of DMD
‘ exp{ 1t }: Temporal evolution mode of DMD

x(t) =lalp exp{ 2 b| (t —|c|) }
T - :
a:Parameter for adjusting k

inundation depth The parameters are adjusted

A so that the model can
b:Parameter for adjusting the

) _ ) — reproduce the observed
expansion speed of inundation inundation information,

c: Parameter for adjusting the enabling inundation prediction.
inundation start time
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Example of Flood Prediction Calculation Using DMD (Kinu River)

(Predicted area of inundation at 14:00)
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Calculation at
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Development of a system that enables residents to grasp
specific inundation risks in real time

> We are developing a tool that provides realistic inundation occurrence and prediction
information in real time through the LINE app on smartphones.

> By registering one’s current location via GPS (or entering an address, etc.), residents
can specifically understand “when and to what extent inundation will occur.”

> In addition, if evacuation is necessary, the tool allows users to check the nearest
evacuation site.
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Hearing at the Joso City flood prevention drill venue

At the venue of the Joso City flood prevention drill held in April 2025, we
explained the details of the system under development using a demo
screen and posters, and conducted hearings to gather feedback on
effective utilization methods and points for improvement.
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Social implementation of R&D results

Real-time inundation information / Tools enabling residents to grasp
prediction information concrete flood risks in real time
Implementation target: Implementation target: Municipal
“River Disaster Prevention Information,”of LINE accounts
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Provision of Inundation Risk Information Before and After

Inundation is Detected

Provision of Information Before Inundatlon is Detected

Rising
water
levels

Rising
water
levels
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Inundation hazard information by IDR4M (1)

Flood Risk Line Flood Risk Line
\/ (Level 3)
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(Level 4)
IDR4M Inundation
: Hazard (Level 4)
Inundation Hazard
@JTPUT Flood Risk Line
SN (Level 5)
KN —R - :
B =rL 005 BRReTRRIE IDR4M Inundation
- LRIV BEETARY Hazard (Level 5)
SRS BRESRIRY
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Inundation hazard information by IDR4M (2)

Collection of data from

Inundation Navi

Occurrence of flood risk lines (5 locations, Level 3)

~
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Overlay of inundation areas from Inundation Nauvi,
colored according to the flood risk line levels
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Outline

1. Currently available flood risk information

2. Characteristics and lessons of recent
flood disasters

3. SIP project — Subtopic B

4. Conclusion
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Conclusion

® \While hazard maps and disaster information are provided during
emergencies, the evacuation actions and disaster response of
residents and businesses remain insufficient.

® One of the most important reasons is that “people do not perceive flood
disasters as their own concern.”
® Purpose of Technology R&D

* Provide information that allows people to realistically recognize the
dangers of flooding, both in normal times and during disasters.

* Provide information that quantitatively indicates future flood risks
under climate change.
® Current Status
« Developing a prototype of the information provision system.
« Conducting demonstration experiments in the field.

® Goal
* Introduce the system to national and municipal governments.

 Build a framework that enables society as a whole to adapt to flood
disasters.

Thank you for your attention.
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1. Introduction - Flood Risk(s) and
future Change(s)
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Flood risk(s)

 Pluvial Floods
 Fluvial Floods

« Coastal Floods

« Groundwater Floods

Compound Floods

unpaved
ground can
infiltrate
stormwater, but
soil infiltration
rates may be
exceeded
during
cloudbursts.

paved surfaces
cannot infiltrate
stormwater

stormwater, or stormwater

overwhelmed mixed with diluted sewage
drainage in combined sewer areas,
infrastructure can discharge from
overwhelmed drainage
infrastructure

pluvial flooding

flooding that occurs when the intensity of precipitation exceeds the capacity of the land surface to
infiltrate it and / or when the rate of runoff exceeds the conveyance and / or storage capacities of
natural and engineered drainage sy Pluvial flooding is commonly described as ‘urban’
flooding since it is a particularly important type of flooding in cities.

bankful stage

flood
hazard area

downstream
fiooding

fluvial flooding

flooding caused when the stage of a river, creek, or stream exceeds the elevation of its banks; also
known as river flooding.

TUHH

WASSERBAU

River and Coastal Engineering

www.climateassessment.nyc

at-risk

resulting from sub-surface
elevated infrastructure /
groundwater structures
levels

groundwater flooding

flooding caused when the water table rises to levels that cause inundation of the land surface or
subterranean property.

flooding

coastal storm

storm tide
mean high tide

mean low tide
coastal flooding

flooding caused by high tides and storm surge. This type of flooding will be exacerbated by sea
level rise.

29.10.2025




Future change(s)

TUHH

WASSERBAU
River and Coastal Engineering
« Climate Change
« Change in Geomorphology
« Societal requirements
« Technological developments
6
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Catchment Scale TUHH

WASSERBAU

River and Coastal Engineering

« Measures and Changes within the
catchment influence the water
system upstream and
downstream
* Flow reduction, water retention

and upstream floods

* Increase of flow velocities and
downstream floods

 Holistic water management
approach is inevitably necessary

29.10.2025
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3. Measures and (Smart) solutions
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Measures - Three Pillars of Flood Protection

TUHH

WASSERBAU
River and Coastal Engineering

Modern Flood Protection

Technical Flood
Protection Measures
(natural)
Water Retention

0
%
@
c

®;
@
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S
Q
@
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e,
o,

O

L
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Smart solutions and innovation (selection)
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Innovations
- Digital Twin => Integration of data and models
- Development and integration of innovative structures
- Adaptation of existing technical infrastructure to reduce risks and to
improve resilience and to adapt to the consequences of climate

change gaining additional co-benefits (environment + social)

- Holistic approaches and nature based solutions

1
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. . . . . . TUHH
Modeling in Hydraulic Engineering and Risk Management
WASSERBAU
Kalypso - an open source modeling system for numerical simulations in
water management
KalypsoHydrology r Kalypso1D2D KalypsoFlood > KalypsoRisk
v 4 4
e Hydraulic * Flood model .
e Semi-distributed hydrological modelling * Risk model
model
~ overlays F g m-:slam1mm
R Ty e Sk
-« 4 =iz
V-] f?es_uslptse:cific damage values for
J . f\l::gaelvee:;:;:ted damage
\ ) " values. )
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Modeling in Hydraulic Engineering and Risk Magaogement

Kalypso - an open source modeling system fc
water management

KalypsoHydrology

KalypsolD2D

e Semi-distributed hydrological
model

~ overlays

TUHH

WASSERBAU

River and Coastal Engineering

ulations in

KalypsoRisk

¢ Risk model

b
T

883888887 °

I
«9
AR

hkasiai’

e

Results:

*  Specific damage values for
flood events.

*  Annual expected damage

& values.

Scenario 1_HQ100

=

13
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Risk reduction through protection
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Risk= Probabaility x Consequences

J
| " o /I\
@ cggfcsi?)?l(g)
; P, < PTZ I

Redum_n.g the - / T L .
p o ba b | I Ity Of River, Flood defensive Urban system
ﬂOOd S sea or lake structure

IR A
©) . oA s I i = s
! Ll L1
w Threshold i
capacity (C)
River Severage Severage

| system system I

14

Urban system
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Risk reduction through protection

Risk= Propabaility x Con

TUHH
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River and Coastal Engineering

o O
A C
= @
O
O ° @ n
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° @ O <
O O
Reducing the e
oA ’, ®
prObabI“ty Of o Z = ® sive LUrban system
floods o ¥ O &
O
o ” N @
0" O @ o ~ /TN
° A .
AN 0 N LR ~— 7 A
A ° A ’, W 1 Il | P | Il
o U cggraec'si?;:g)
River Severage Severage
system

-| system

15

Urban system

29.10.2025




. . TUHH
Options of Flood Protection
WASSERBAU
Risk of Flooding = Probability of flooding x consequences (damages)
e Limit risks => Reduce (minimize) consequences
=> Improve resillience of systems
 Reduce consequences [ damages [ damage potentials => water adapted constructions
(living with water)
* Limit risks => reduce probability of occurance
=> improve protection level
16
* Reduce storm water levels
* Increase height of flood protection measures
29.10.2025




4. Example a: Urban Drainage

TUHH

WASSERBAU
River and Coastal Engineering

17

29.10.2025




. . - . TUHH
Overview of Flood Risk Mitigation Measures
| systems
e SUDS
Controlled
surface 18
conveyance
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SUDS — overview of technologies
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Source control measures:

- Green roofs

Infiltration techniques:

Filter trenches, drains and strips
Soakaways
Rain gardens

Detention structures:

- Swales

- Ponds

-  Wetlands

- Bioretention
areas

19
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Application of SUDS in Drainage Systems

TUHH

WASSERBAY
—> Integrated approach of application SUDS
s EINIE si8 Conveyance
. ==l }| Il IF of
_______ - ;w;;’g:/ff,’ : / exceeding
L1 A Conveyance O\C’jvnplrl?e
A I / >
o 11 | Retention Conveyance” ; Seperator of and suriage
N and exceeding Conveyance  €xceeding rills
Water- Infiltration infiltration  lOW in On-sit of flow in On-site
course  and _ streets n-site : f ils  infiltration
- exceeding retention exceeding surface rills
interflow o~ " filratio! flow throuah through 20
to water- Intiitration y tnroug unpavement
green and drain pipe
course .
corridors, groundwater  and
public recharge stormwater
spaces network
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SUDS and spatial and temporal scales in hydrology
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Regional scale Meso scale District scale Local scale Micro scale
> 100 km? 1 —10 km? 0.1 —1km? 1 -100 m? <1 m?

Riverien watershed/ ~ Water system Interlinkages / Logal scale 30,1 water regime
catchment components/ sub- pref. flowpaths drainage measures
: ' catchments (LSDMs)
Parameters: ) . .
Flow path parameters like LSDM parameters: such Hydrological soil
For example (e.g.) E.¢. the maximal the flow path lengths and as storage volume, parameters: such as
geological attributes. groundwater recharge profiles among LSDMs. number of layers. wilting point, field
rate. rainwater harvesting capacity, hydraulic
function conductivity.

a) Heterogeneity in spatial scales -
—————————————————————— =Iiidependent definitivh§ —————r—mm——e—————————

b) Variability in temporal scales

z z =z >
: : z H -
2 2 2 2 —/
= =
L>Time L Time TN | .
1950 1980 2010 Jan June Dec Oh 5d 10d Omin 15min 30mirT ! Omin Smin l(;mir'lr e
Longterm scale Seasonal scale Daily scale Shortterm Process
(years) ; (mor‘)tths) (days) scale (minutes) scale (seconds)
g, vegetation . .
E.g., groundwater table parieters (crof oo E.g.. baseflow E.g., surface runoff, E.g., soil water

interception, root depths)

local rainfall
information (e.g.,
radardata)

infiltration and
exfiltration processes
in layers

22

From: Hellmers, S. (2020): Integrating local scale drainage measuresin meso scale hydrological modelling of backwater affected catchments, after Hellmers & Fréhle (2017)
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Integration of data TUHH
=> RADKLIM precipitation climatology - event 31.07.2004 WASSERBAU

Dayly average Station
FuhlsbUttel: 0,7
mm/day

Intensity: 10-

20mm/5min

A Station Hamburg-Fuhlsbittel YW_2017.002_20040731_1330 0_:—5 Kilometer
D Hamburg Wert
o 216
1 29.10.2025




SUDS- the planning aspects

A Legende

1= MaRnahmengebiet
L Brauhausviertel

Entwasserungssystem
&| Abfluss bei Extremereignissen

~"~p Abfluss liber Sammelrinnen

Abfluss liber Griinanlage
p (teilweise mit Mulden,
Sickerteichen und Rigolen)

) Abfluss lber Rigolen-Systeme
\

Tiefbeet-Rigolen-System
(Retention, Versickerung,
) Ableitung;
“*~ 2.B. Innodrain-System von
Ingenieurgesellschaft
Prof. Dr. Sieker mbH)

Rigolensystem fiir geringe

Grundwasser-Flurabsténde

(Retention, Versickerung,
= Ableitung; z.B. HeitkerBloc

Rigolensystem der

Heitker GmbH)

FlieRrichtungen

R -
A e e R
PPN N i T =

FlieRrichtung im
~~—~ Entwésserungssystem
der Griinachse

suUDs

Flachenversickerung
& Mulden-Versickerung

Mulden-Rigolen-
Versickerung

Sickerteich mit Rigole

(Vorbehandlung notwendig,
z.B. geméar DWA M-153)

#" Rinnenférmige Mulde

Ableitung Uber offenes
G‘ Gerinne

Sammelrinne - Erf.
@ Gesamtbreite (T100)

Rinnenférmige Mulde - Erf.
Gesamtbreite (T100)

0 10 20 40 60 20

Meter N

TUHH

WASSERBAU

River and Coastal Engineering

Studienarbeit im Vertiefungsfach
Siedlungswasserwirtschaft

TUHH SW WAZERBAU

RecAvacts Cvamrati A Rt iver and Coastal Engineering

Projekt: Entwicklung eines
Konzepts flir die Dezentrale
Regenwasserbewirtschaftung im
kleinen stadtischen Einzugsgebiet

Brauhausviertel, Bezirk Wandsbek,
Freie und Hansestadt Hamburg

Planung - Entwésserungskonzept flir
Extremereignisse (z.B. T 100)

24

Bearbeiter: Mafstab:
Thomas Wehlan 1:2.500
Plannummer: Datum:

S1-SWW_P34 19.01.2011
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SUDS- the planning aspects
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. TUHH
Green — roofs — storage capacity
WASSERBAU
Local and de-centralized retention of stormwater
« Green-roofs
« cisterns
« Multifunctional spaces
(sport-area [ streets /
playgrounds [ etc.)
BN/
ey Lee |
26
(1) Spardach (2) Naturdach (3) Retentionsdach (4) Gartendach
Height 6cm 10 cm 10 cm 15cm
Storage capacity 51/m? 8,7 |/m? 28,5 I/m? 23 1/m?
Type of greening extensiv extensiv extensiv intensiv
29.10.2025




Green - roofs — storage capacity

Local and de-centralized retention of stormwater

« Green-roofs

« cisterns

« Multifunctional spaces
(sport-area [ streets /
playgrounds [ etc.)

(1) Spardach
6cm
51/m?

extensiv

(2) Naturdach
10 cm

8,7 |/m?

extensiv

TUHH

WASSERBAU
g

River and Coastal Engine:

ering

i —

TmE
e W
. » =

(3) Retentionsdach
10 cm
28,5 1/m?
extensiv

00 o -

(4) Gartendach
15cm
23 |/m?
intensiv
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. . TUHH
Hamburg — Green roof strategy = upscaling of solutions
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4. Example b: Adapted Constructions
and Uses
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Reduce consequences: Adapted Constructions and Uses
=> HafenCity Hamburg Flood Adapted Constructions
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Building or infrastructure

-
(LI
- as water tight construction

- as flood protection wall or
dike

e on stilts

- amphibious or floating

30
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Living with water: Flood adapted constructions TUHH
- HCIfenCIty HOImburg WASSERBAU

River and Coastal Engineering

Hinweise fiir die Bevolkerung im Warnbereich:

<] Verlassen Sie vorsorglich das Gebiet, r-.
wenn Sie keine Fluchtmaglichkeit
in obere Stockwerke haben!

\A ’@n@rbﬂc, A

WA Ciysiid) % ,

\wsaa

Hochwasser
warnungen

" | Sturmflut-Hinweise fiir die Bevolkerung in der

/| HafenCity und der Speicherstadt

Zeichenerklarung

31

i Houptdoichlinio ——sichore Gobioto AN ]
i h Gebiot ind Warften) H g
insgesams hoch i sl Hochwassersichere |
hoch hiitzte Gebaude - berfl ahrdsto Straien und :
I Flschon im Unfeld ‘ S Bauweise
i [ insgesamt uberflutungsgefahrdetes Gebiet ab 5,00 m aber NN
L
| u?75 Hohenangabe in Meter iiber NN
Die Ho und i geben den aktuellen Stand der
BaumaRnahmen wieder und kénnen sich im Laufe des Baufortschritts verandem.
00
= =14 T T T 7 T Rt )
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Flood adapted constructions — water tight constructions
HafenCity - Hamburg
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Flood adapted constructions — water tight constructions
HafenCity - Hamburg
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Flood adapted constructions — water tight constructions
HafenCity - Hamburg

TUHH

WASSERBAU
River and Coastal Engineering

Quelle LSBG
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Flood adapted constructions — escape routes
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Flood adapted constructions — escape routes
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Flood adapted constructions — escape routes
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Flood adapted constructions — escape routes
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Flood adapted constructions — Constructions as flood TUHH
protection wall - Fluttore / Example Landungsbricken HH WASSERBAU
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4. Example ¢ — Preparedness:
Flood Protection of the Future:
Elbe Estuary and Schiei Area

TN

AN =




Main Objective
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Identify and analyze the potential options for future flood protection in
the catchment of the Elbe and the Schlei

evaluate them comparatively from a
- Hydraulic engineering
- Water management
- Ecological

« ECcOnomic

perspective.

42
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Elbe estuary and flood prone areas
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®Kappeln

.
Husum
rnforde

Peter-Ording

L]
®Bisum Eutin

® Fimmendorfef S
®itzehoe

Cuxhaven

#Bad Oldesloe

®Eimshorn

43

®Stade

Ihelmshaven . ®Bremerhaven

® Aurich

®\iesmoor

®B(chholzin.der'Nordheide
Datai SIO; NOAA, \U.SiNavy, NGA: GEBCO4 X .
Image Landsat //Coperi

J ‘uneb'urg Goog|e Earth

Bildaufnahmedatum: 12/14/20 32 U 391505.04'm E 6056711.59 m N Hohe . 0'm  sichthohe 21 km
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Elbe estuary and flood prone areas
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Individual Measures for Flood Protection in the Estuary
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Flood-Polder (1P) Reduction of Cross-section (2Q) Strenghtening (3V)

Storm-surge barrier (2S)

Increase of Dissipation (2D) Adapted constructions (4A)
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Individual Flood-Protection in the Lower Elbe Catchment
— reduced cross-section
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6 possible locations for
reducing cross-section area
in the Lower Elbe catchment
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Individual Flood-Protection in the Lower Elbe Catchment TUHH
— storm-surge barriers WASSERBAU
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Combination of individual meadsures into packages
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»Maintaining proven
concepts.”

Package Il
»A Storm-Surge-Barrier
for the Elbe.”

- a: Friedrichskoog Spitze

- b: bei Brunsbuttel

Package Il
»1The Hybrid Solution®

Where?

- a: Friedrichskoog Spitze
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Kollmar+ " ™

Package IV
~opace for the Elbe.”

- a: all possible locations

v > b:all possible locations +

Package V
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protection structures to
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4. Example d: Preparedness Flood
Protection of the Future for the Schlei
Area => Baltic Sea
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Catchment of the Schlei

Area: 63.000 ha

Water courses: 1.390 kmr‘
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Hydrodynamic-numerical model of the Schlei
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Conclusions
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Water is like a young child

« We have to foresee possible actions and reactions of water

- Water needs guidance

- Avoid that water is coming into an area where it may cause damages
Resilient and climate proof urban water systems need

« process understanding

 Information and data . .. . .

integration into a digital twin
+ models and
60

innovative (technical and nature based) measures

to quantify effects and effectivity as basis for planning and
decision making
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Water management is like educating a (young) child

« We have to foresee possible actions and reactions of water
« We need to provide Water the necessary guidance
- We have to avoid that water is coming into an area whered damages

process understanding
Information and data
models and

innovative (technicg

to quantify effects and e
decision making

tivity as basis for planning and
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Disaster Forecasting Models and
Data Visualization: Applications in
Early Warning System Platforms

Analyzing Disaster Mechanisms and Developing
Intelligent Early Warning Systems

Speaker: Hao-Che (Howard) Ho

Associate Professor, Department of Civil Engineering,
National Taiwan University




.
3

L
TN




’ Extreme Climate Events




The Importance of Disaster Forecasting and Data Visualization

» Through computational modeling and data visualization, we can transform complex climate events into
understandable information.
» This not only improves the efficiency of early warnings but also enables decision-makers to take action before

disasters happens.

Global reported natural disasters by type, 1970 to 2019 Our World
The annual reported number of natural disasters, categorised by type. This includes both weather and non-weather ~
related disasters.
Data
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Source: EMDAT (2020): OFDA/CRED International Disaster Database, Université catholique de Louvain — Brussels — Belgium
OurWorldinData.org/natural-disasters « CC BY 4



’The Importance of Disaster Time Scales

> Different disasters occur over different time scales, and understanding these patterns helps in

designing effective monitoring and early warning strategies.

Short-Duration Disasters

v Require real-time monitoring.
v Require fast response, e.g., heavy

rainfall and flash floods.

Moderate-Duration

Disasters
v Require integration of rainfall

forecasts with watershed modelling.
v Examples include river floods, and
dam-breaks from landslide-dammed

lakes.

Long-Duration Disasters

v Require continuous monitoring.
v Require trend analysis for
forecasting, e.g., landslides and

slope failures.



»Why Its Important to Understand Disaster Mechanisms

> Disasters are not caused by a single factor; they result from the combined effects of climate, topography, geology,

and human activities.
> Only by understanding how these factors interact can we develop scientifically grounded forecasting models.

» Grasping these mechanisms not only allows us to predict disasters but also to mitigate risks at their source.

Modelling

Hydrology | Topography
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’Types of Disaster Forecasting Models

[ Space-Time Model ]

Considers both temporal and spatial

variations, simulating the dynamic

processes of disaster formation,

propagation, and recession. It can
[ Single Point Model ] . simulate flood propagation and serves
as a core foundation for intelligent

[ Surface Model J

Focuses on forecasting at a single _ Simulates disaster distribution
disaster management systems.

station or location, using historical across an entire region by

and real-time data to analyze

changes in water level, rainfall, or
slope moisture content. It can
quickly reflect risk trends at specific

integrating spatial data such as

topography, rainfall, and land use.
It can depict flood extents,
landslide susceptibility, or debris

points and is commonly used for flow distribution, supporting

early warning and threshold-based regional disaster management

assessments. and resource deployment.



’ Single Point Model — Data-Driven Forecasting

Point models use historical observational data from a single location to predict future trends through statistical or machine learning

methods.

» These models do not require complex physical parameters, making them suitable for rapid development and use in real-time

monitoring stations.

> However, they can only reflect local conditions and are limited in describing the spatial distribution of the overall disaster.
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Surface Model — Regional-Scale Forecasting

Surface models are based on geographic information and physical processes, simulating disaster behavior across an entire

watershed or urban area.
They integrate multi-layered data such as rainfall, topography, and land use to predict disaster distribution at different locations.

Although these models require larger computational resources, they provide decision-makers with spatially meaningful

information, such as flood extent maps or landslide susceptibility maps.
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’ Space-Time Model — Dynamic Disaster Simulation

» Space-time models can simultaneously describe the spatial spread and temporal evolution of disasters, presenting a complete

dynamic process.
» Through numerical simulations or deep learning architectures, they can reproduce the continuous states of disaster occurrence,

development, and recession.
» These models are suitable for simulating rapidly changing events such as flood propagation, slope failures, or dam-breaks from

landslide-dammed lakes.

0.00 2.00 4AQ.O> 6:00 8.00 1000 12.00
Flow height (m) o




The Importance of Model Parameters

» Model parameters determine whether the forecasting results can accurately reflect local conditions.

» By adjusting these parameters, the model can “learn” the differences in characteristics such as topography, rainfall, and

watersheds, allowing predictions to more closely match the actual occurrence and development of disasters.
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’ Natural Disaster Cases in Taiwan

» According to the Urban Risk Index developed in

collaboration between the University of Lloyd’s City Risk Index

Cambridge and Lloyd’ s, Taipei City ranks among e IETANELTL, ruRkex
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’ Natural Disaster Cases in Taiwan

» 2017 Taipei Extreme Rainfall Event
— Simulated urban drainage and flood detention benefits using rainfall events

of different return periods to evaluate the impact of terrain modifications on

flood mitigation.

— This case highlights the importance of ‘detailed terrain adjustments’ for

.

uy

simulation accuracy in urban inundation forecasting and provides empirical § I ! (S i

evidence for future standards on stormwater retention and outflow control. S -

‘ l:"~ Nl
DBZ 2017-06-02 09:00 g &

Nmn STA 2017 06— 02 0900

@ Predicted flooded areas
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’ Natural Disaster Cases in Taiwan

» 2015 Typhoon Soudelor Debris Flow Event

— During Typhoon Soudelor, the Nanshi Creek watershed experienced large-scale landslides and channel diversions due to continuous

heavy rainfall, triggering secondary disasters such as debris flows.
By comparing terrain and conducting slope stability simulations, the landslide and sediment transport processes were reconstructed,

establishing a landslide—-deposition—erosion chain mechanism for the watershed.
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Natural Disaster Cases in Taiwan

» 2025 Hualien Mataian Creek Landslide-Dammed Lake Dam-Break Event

— Dam-break events of landslide-dammed lakes are among the most challenging scenarios in disaster forecasting. Rapid changes in

water level and the sudden release from a dam-break can cause severe downstream flooding.

— By simulating the collapse process of a landslide-dammed lake, it is possible to estimate the timing of the dam-break and the extent of

its impact, enabling disaster management authorities to evacuate early and reduce losses.
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Analysis from Model Computation
to Real-Time Sensing
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’ Applications of lIoT in Disaster Forecasting

» The Internet of Things (IoT) enables disaster monitoring to become real-time and high-density.
» Sensors can continuously collect information such as rainfall, water level, and soil moisture, and transmit it

wirelessly in real time to early warning platforms, allowing models to be updated and adjusted instantly as the data

changes.

Waterdlfevelllndicator

18



’ loT System Architecture and Data Integration

> loT systems integrate sensor networks, data transmission, and cloud analytics to consolidate monitoring information from various

locations in real time, forming a comprehensive disaster monitoring network.
» These data are not only used for model computations but can also be directly converted into visualized information, enabling early

warning platforms to issue alerts immediately.

loT Sensors Communication Cloud Platform Visual Interface

Network 19



Roles and Requirements of Early Warning System Platforms

» An early warning platform serves as the central bridge connecting “data, models, and actions.”

» It must integrate multi-source data and present risks and trends in a clear manner.
> A well-designed platform not only issues alerts but also helps decision-makers understand “why action

is necessary.”

Monitoring Platform

v" Remote Monitoring &
Control

v" Real-Time Status
Detection

v Abnormal Event Alerts via

LINE

Rainfall Tilt  WindSpeed RenewableEnergy Backup Power Telecom Network

BHBOo® @ 8 6




Design Principles of Early Warning System Platforms

» An effective early warning platform should simultaneously ensure accuracy, real-time performance, and understandability.

» Information must be clear and easy to read, enabling users to assess risks quickly.

> At the same time, the system should have a stable data update mechanism and multi-level alert notification functions to

ensure critical information is delivered to the right people in the shortest possible time.
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Applications of Data Visualization in Early Warning System

» Data visualization can transform complex model results into clear risk representations.
» Dynamic maps, timelines, and alert color scales allow users to quickly perceive disaster trends.

» Clear visual presentation significantly shortens decision-making time and enhances response efficiency.

Category of Warning Levels at Water Level Telemetry Station
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Users and Application Scenarios of Early Warning Platforms

> Different users play distinct roles in disaster response.
» Government agencies require comprehensive risk assessments, local teams focus on real-time notifications, and
communities and the public rely on concise alert information to guide evacuation actions.

» Platform design must accommodate multi-level needs to ensure information is effectively used across all user levels.

Central Government” @ @ Local Government

It is necessary to monitor rainfall, water levels, and
disaster conditions in real time within their
jurisdiction, and quickly deploy personnel and
resources to carry out disaster prevention and rescue
perations.

It is necessary to integrate monitoring and
forecasting data from across the country,
conduct cross-regional risk assessments,
and issue unified decisions and response
directives.

Disaster Management Agencies @

@ Community and Residents

It is necessary to obtain accurate monitoring data It is necessary to provide clear and easy-to-
and model simulation results to assess disaster understand alerts and route guidance, enabling

potential and establish appropriate alert and people to quickly grasp risk situations and take
notification mechanisms. evacuation and self-protection measures. 23



Hualien Mataian Creek Barrier Lake
Disaster Event




’ Event Timeline
2024/04/03

Matai'an Creek Barrier Lake G\ SRS

caused slope destabilization,
raising concerns over potential
geological instability.

In July 2025, heavy rainfall from Tropical Storm Wipha triggered
a massive \landslide upstream of Matai'an Creek, creating a
barrier lake around 11 kilometers from the nearest downstream
communities:

2025/07/25

24

: Intense rainfall from Typhoon
= Wipha triggered a large-scale
' upstream landslide, resulting
. in the formation of a barrier
ﬂ lake.

23

Matai‘an Creek
<iBarrier Lake *

-

22

Sept. 23,2025 14:50 | po
" Time offoverflow g d 2025/07-09

—

Frequent rainfall over two
months caused a gradual rise
in water levels, approaching
the structural capacity limit of
the dam body.

e TR T

N 1 e :x“ 3T '. 'r; | ‘ A
Upstream of Matai'an Creek  After the July 2025 landslide Barrier lake is formed
before the landslide

¢ ¢ ~pe” o T
«Source: Forest and Nature'Conservation Agency, Nattop&Saence apd P > %
Technology Center for Disaster Reduction o y - W '

< 4* £ - » N e
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’ Event Timeline

2025/09/23

14:50

Overtopping occurred at the @
dam crest, and within a short

period, the dam breached,
releasing a large volume of

water and  debris flow
downstream.

Sept. 23 Matai'an Creek Barrier
Lake overflow

Typhoon Ragasa caused the Matai'an Creek Barrier Lake to overflow
at 14:50 on Sept. 23. The water'level dropped 14 meters within 30
minutes, releasing an estimated 15.4 million cubic meters of water.

15:08

16:00

The second wave  of
floodwaters fully inundated
the Guangfu urban area, with
first floors nearly completely
submerged.

O*

—)

The first flood peak reached
the Mataian Creek Bridge, and
at approximately 15:30, the
bridge collapsed, disrupting
transportation.

15:08 e ? L ST a

The first wave of peak
flow rushes toward the

Matai'an Creek Bridge ~

15:30 s

I\/Iatai’ah I ‘i ata'f .‘éreek Bndge ise 2
Creek s 2




’ Formation of a Barrier Lake

> Barrier Lake Data

— Location: Wanrong Township, Hualien County

— Dam Height Before Overtopping: Approximately 250 meters

— Lake Surface Area Before Overtopping: Approximately 137 hectares

— Reservoir Volume Before Overtopping: 86.37 million cubic meters (full
capacity ~91 million cubic meters)

— Affected Area: 1,837 households (6,843 residents living there).

#RIZER . European Union, contains modiiled Copemicus Sentinel data 2025 | ##HE8E :

MZEH | HE THER
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’ loT Monitoring System

> Establishment of a Monitoring System

— Instruments such as satellite-based water level gauges, pressure-type water level sensors, UAV aerial
photography, LiDAR, and micro-seismometers were employed.

— Real-time data were transmitted to the Central Disaster Prevention Center to monitor water levels and slope

deformations. C ’

< .

o

CommUiinication

Satellite Seqyice

CommunieEiien —
IAntennal | S

1 = " Deployment.of Depth-Sounding'Buoys

Pressure-Type Weier Leval @evge 28



’ Disaster Response and Management

Central Emergency
Operation Center

v v
. o=
l\ : : ..\J/" . .
Lo - A
RRINREOXREE Z w3 KA Hualien %, VLS
Agency of Rural
Forestry and Nature Development and Soil Water Resources Local Research
Conservation Agency and Water Conservation Agency Government Institutions
Deploy UAVs and aerial || Analyze dam stability Notify downstream || Conduct emergency Perform real-time analysis of
surveying for monitoring || and breach simulations || flood control units and || evacuation and sheltering, | | monitoring data to provide
to track the barrier || 1o sypport local access || initiate levee || coordinating police, fire, || dam breach and hydrological
' . . . ivi simulation forecasts. Assist in
lake’ s water levels and road and drainage inspections and and civil defense .
dam changes, and to . . . personnel to support the the deployment of satellite
planning. temporary heightening
assess the risk of dam ¢ o rotective struct disaster area. water level gauges and Al-
breach. Ot protective structures. based early warning systems.

- /. RN RN /. J
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’ Disaster Overview

» On September 23, 2025, floodwaters surged within just 30 minutes, releasing an estimated 15 million cubic meters of

water. Multiple bridges and levees were destroyed, and downstream settlements and farmland were severely

inundated. The disaster resulted in at least 18 people were killed and several others went missing, disrupted

transportation and communications, and damaged or buried hundreds of households.




’ Disaster Overview

> A massive volume of collapsed debris moved downstream, severely impacting the mid- and lower-reach riverbeds,
with localized elevation increases of 2-50 meters. The river cross-sections were reshaped, and the flow paths and

flood discharge routes were significantly altered.
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’ Warning and Reporting Procedures

On September 21, a was issued — upgraded to a Red Warning on September 22.
» The Central Emergency Operation Center (CEOC) coordinated unified command, immediately notifying downstream townships and

initiating evacuation.

» Warnings were disseminated through multiple channels, including disaster prevention warning SMS, police radio broadcasts, and local

disaster response groups.
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Local Disaster Response Groups
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Resilience Community
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Isaster Volunteers
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» Post-Event Challenges and Risks

» High Geological and Climatic Uncertainty: Slopes remain unstable, potentially triggering
secondary landslides or the reformation of a barrier lake. 5

» Engineering and Access Limitations: Severe mud conditions and difficult transportation on site
restrict the deployment of heavy machinery.

> Inter-Agency Coordination and Long-Term Management Challenges: Integration of multiple
disaster prevention agencies is required to ensure consistent monitoring and remediation

objectives.




Analysis from Technological Applications
to Disaster Management Vision




Future Outlook and Development Pathways

> Future disaster forecasting will integrate artificial intelligence, cloud computing, and denser sensor

networks.
» Data will no longer serve merely as monitoring results but will become the basis for proactive
warnings and decision-making.

> This will allow every disaster to be predicted earlier, observed by more people, and ultimately redu

disaster losses to the minimum.
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International Collaboration and Sharing Taiwan Experience

» Taiwan has accumulated extensive experience in the development of disaster monitoring and early warning systems. From real-
time rainfall networks and watershed simulations to resilient communities, Taiwan possesses a comprehensive technical
framework.

» These achievements are being shared through international collaboration with countries in Central America, such as Guatemala,
to jointly promote regional disaster resilience capacity building and technology transfer.
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Integrated Vision for a Transnational Disaster Management Platform

Disasters know no borders, and transnational information integration is a key direction for future disaster management cooperation.

Y VY

By sharing meteorological data, real-time monitoring, and simulation results, countries can coordinate responses before disasters
OCCuUr.

» Establishing a regional disaster management platform enhances transparency of early warning information, accelerates decision-
making, and ensures that disaster management technologies truly serve as global public goods.
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Conclusion and Outlook

> Disaster forecasting is not merely a technical issue; it is the integrated outcome of communication, collaboration, and action.

» From understanding temporal scales and applying models to constructing loT systems and early warning platforms, each
step brings us closer to the goal of “preparing in advance and minimizing losses.”

> In the future, through data sharing and international collaboration, we aim to build a more resilient disaster management

system.

Commu
nication

Resilient
Disaster
anageme

Collabo
ration
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Al for disaster monitoring and
future challenge of climate change

Presenter: Dr. Su, Yuan-Fong
National Taiwan Ocean University
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. Al for near real-time flooding detection using CCTV in urban
area

. CCTV for shoreline monitoring using U-NET

. Al and Cloud-based remote sensing for disaster monitoring

4. Future Challenge of Climate Change

y HE/E:./ /¥j('ﬂ'
National Taiwan Ocean University



Al for near real-time flooding
detection using CCTV in urban area




Can we automatically detect flooding
from all CCTV footages?

> In a small island, Taiwan, we have 100,000+ cctv footage.

> Every year we may have several flooding events result from
storms and typhoons.

> It is impractical to monitor all cctv footages by people.

> Therefore, we need an algorithm to automatically detect
flooding from all cctv footages.

» The algorithm we used is Convolutional Neural Network.
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Convolution Neural Network (CNN)

Full-connected
Neural Network

Feature Extraction

Input Hidden Output

Image Feature Feature Feature Feature
(150x150x%3)(150x150%x3xN) (75x75x3xN) (75x75x3xM) (38%x38x3xM)

[ N S 2 )

Conv2D (O Inputneuron

Pooling O Hidden neuron ‘ Output neuron

GIAVE VRPN
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Training sample collection

> tw.live ek
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Training sample collection
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Image collection

» There are 134 photos are labeled as (1) for normal (not
flooding).
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Image preprocess

>JPEG, JPG, TIFF convert to PNG
>Resize to 150x150

>Normalize to 0~1.
>Split to Training (80%) and Testing (20%) datasets

. HE/% /327(%
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Convolution Neural Network (CNN)

» Using TensorFlow to construct a CNN.

= Sequential() '
.add(Conv2D(32, (3, 3), input_shape=INPUT SHAPE)) Conv2D (32) Flatten

.add(Activation('relu'))
.add (MaxPooling2D(pool _size=(2, 2))) Dropout(0.2) Dense(128)

Activation(‘relu’) Activation('relu’)

.add(Conv2D(32, (3, 3), kernel initializer 'he uniform')) -
.add(Activation('relu')) MaxPooling2D Dropout(0.4)

.add(MaxPooling2D(pool_size=(2, 2))) Conv2D (64) Dense(1)

.add(Conv2D(64, (3, 3), kernel initializer 'he uniform')) Dropout(0.2) Activation('sigmoid’)
.add(Activation('relu'))
.add(MaxPooling2D(pool size=(2, 2)))

Activation('relu’)

MaxPooling2D

.add(Flatten())
.add(Dense(64)) Conv2D (64)
.add(Activation( 'relu')) Dropout(0.2)
.add(Dropout(0.5))

Activation('relu’)

.add(Dense(1))
.add(Activation( 'sigmoid’'))

MaxPooling2D
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Epoch =10

> Total parameters: 1,212,513
» Training time: 82 sec.

» Training accuracy: 100%

» Test accuracy: 81.25%

> Threshold: 0.59

Labelled
Testing

Normal Flooding UA

Normal 24 3 89%

Flooding 6 15 1%

PA 80% 83% OA=81.25%

payisse|D

Labelled
Training
Normal Flooding UA

Normal 0 100%

Flooding 0 87 100%

PalISsSe|D

PA 100% 100% OA=100%



Mis-classified (Threshold = 0.599)

0.15287736 | 5.466363e-05 0.61987364
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Threshold = 0.599

0.00093767047

100 120 140 0O 20 40 60 80 100 120 140 40 60 80 100 120 140
0 0
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Threshold

0.9764563 ' . 7 0.9995927
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CCTV for shoreline
monitoring using U-NET
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Study area and objective

> Yan-Liao Beach at northern Taiwan.
» Collecting images since 2012.
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Coastal survey

Elevation (m)
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Old method

» Old method utilized —
traditional edge detection ——— |
algorithms and manually e
select coastal line from one of N
edges. N
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Image preprocess

> Mosaic

> Georeference
> Image clip
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Al model

' 128 128

output
segmentation
map

390 x 390 '

392 x 392

=»conv 3x3, RelLU
copy and crop

-
-

¥ max pool 2x2
# up-conv 2x2
= conv 1x1

SRS A
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Al and Cloud-based remote
sensing for disaster monitoring




Cloud-based Remote Sensing

» Opendata
» Cloud-computing
> Freely accessible platform

Request

Client
Response
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Google Earth Engine - Code Editor

Go g|e Earth Engme Search places and datasets... m %
Scripts 1L 10 - Classification Get Link vl . Run vI Reset vI Apps E S -4 0] Console
Filter scripts (:) - Imports (2 entries) B Use print(...) to write to this console.
» var geometry: Point (-77.06, 38.91)
~ Owner (7) » var geometry2: Polygon, 4 vertices
~ users/suyuanfong/Class 1 |ar landsat = ee.ImageCollection("LANDSAT/LC08/C01/T1") You can now use Earth Engine with Google Cloud Projects!
y . g 2 .filterDate('2017-01-01', '2018-01-01") Use the Account menu in the top right to select a project
& 10 - Classification 3 .filterBounds(geometry) or click here to learn more.
B Classify_SVM 4
B ESRI_2020_LULC 5+ var ndvi = landsat.map(function(image) {
B File2 6 var result = image.normalizedDifference(["B5", "B4"1).rename("ndvi")
7 return image.addBands(result);
& Greenland_DEM 8 })
B HYCOM_SST 9 _
& HYCOM_Sea_Surface_Elevation i %? b"lI:; Zgﬁg\){i:mggr\\:;\}?ax%;nds' "ndvi", min:0, max:1}, "NDVI")
. . s ’ . ’ . ’ . ’
B LinearFit_Sealevel 12
& MODIS_SnowCover 13 var cdl = ee.Image("USDA/NASS/CDL/2017").select(0)
B MngsaicTheSameDate 14 print(cdl)
3% #/) 1) ‘; 1§ ﬁ W‘l . -~ = & M= ) Q —
. 19 15 BA Z 0zt / 4p
H 9 NW Geometry Imports SRR Chlcagoo CE £ 1 ] BERIR
7 75 il 47 I i : A
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Google Earth Engine Datasets

Surface Temperature Climate Landsat Sentinel
31 datasets 50 datasets 5 dataset (from 1972) 4 datasets

Atmospheric Terrain Landcover
6 datasets 36 datasets 20 datasets

™ "J IE ~

R = RS B iR & Y 4
High-resolution imagery 3 Cropland Other geophysical data
25 datasets SEEIEEE 2. 3 datasets
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Large scale flooding monitoring

Experimental Q_  Search places

Earth Engine Apps

Flooding in central China, July 2021

{2 suyuanfong.users.earthengine.app.
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2021 Drought

Source: udn.com
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Yamba Dam in Japan

:;Wj"

» Hagibis Typhoon in 2019

» Yamba Dam keep all rainfall
In the catchment to prevent
flooding in the downstream
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Future Challenge of Climate Change




We all know the concept.

(b) Peak and 2100 global warming across
> B u t to W h at eXte n t ? _ scenario categories, IMPs and SSPx-y scenarios

(a) Median global warming across scenarios in categories C1 to C8 considered by AR6 WGI

Scenario range within category:
5-95% across medians of scenarios N

Median within category
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2020 2030 2040 2050 2060 2070 2080 2090 2100 Scenario categories, IMPs and SSPx-y scenarios

C1: limit warming to 1.5°C (>50%) C5: limit warming to 2.5°C (>50%) ‘ i;f:a;o,r:fg;‘/'v:ﬂzss gg‘;}eif::::g;:;g:nai"ty:
with no or limited overshoot C6: limit warming to 3°C (>50%) | oo

| medians of scenarios of 5-95% 2100 warming
C7: limit warming to 4°C (>50%) \\ P

o _ (8: exceed warming of 4°C (=50%) ’ S5Px-y
— QB limit warming to 2°C (>67%) filled: Peak warming (over the 21st century)

C4: limit warming to 2°C (>50%) open: 2100 warming

= (2:return warming to 1.5°C (>50%)
after a high overshoot
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River flow changes in percetange.
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Conclusions

> Deep learning methods such as CNN, U-Net, Attention U-Net
have great potential to enhance efficiency and accuracy
compared to traditional methods for disaster monitoring.

» Cloud-based remote sensing allows us to monitoring various
disaster globally.

> In the future, the return period of river flow may increase three-
fold to ten-fold in Central Taiwan.
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Questions?

Professor : &JTE

Office : jA _g§E510

Tel : (02) 24622192 # 6147

E-mail : yuanfongsu@mail.ntou.edu.tw

Website: https://sites.google.com/view/hrselab-hre-ntou
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